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Real-Time Systems Components: Physical coupling
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Defi nition

First step to embed a system into the real world:

Transform physical phenomena into electrical signals

Usual intention:

Transform one dominant phenomenon into one electrical signal

 e.g. speed, pressure, brightness, loudness, colour, force, humidity, distance, sal-
inity, density, radioactivity, spectrograms, refl ectivity, acceleration, conduc-
tion, power, turbulence, deformation, …, …, …, or: temperature
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Phenomena to voltage

Measuring temperature

Some observable effects of temperature changes:

• Mean square noise voltage changes

• Volume changes (gas, liquids, metals)

• Thermovoltage changes

• Changes in conductors and semiconductors

• State changes: into solid, liquid, or gaseous
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Measuring temperature (Thermoelements)

Seebeck Coeffi cient
( )gradE K Tth $= , with K being the Seebeck coeffi cient (material constant of conductors) 

( )( )gradU E dl dl K T TK Tth th
L L

L0 0 0$= = = -# #

This phenomena stems from the characteristics of electrons to 
transfer electric potentials as well as to react to heat.
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Measuring temperature (Thermoelements)

Thermocouple
• Connect two conductors A and B (of different Seebeck coeffi cients KA and KB) on one end.

• Place the connected end into the temperature zone T2 which is to be measured.

• Measure the Voltage over the open ends in temperature zone T1:

( ) ( ) ( )( )U K T T K T T K K T Tth A A BB1 2 1 22 1= - + - = - -  
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Measuring temperature (Thermoelements)

Thermocouple
Standard thermocouples come prefabricated for different applications:

Short name Material Tmax Uth with 0cto Tmax K KA B-

(T) Cu-Constantan 400 Cc 21.000 mV .42 5 10 6# -

(J) Fe-Constantan 007 Cc 39.720 mV . 1053 7 6# -

(K) NiCr-Ni 1000 Cc 41.310 mV . 1041 1 6# -

(S) PtRh-Pt 0013 Cc 13.138 mV . 106 43 6# -

T2
A

B
T1 Uth

E: Exposed

G: Grounded

U: Ungrounded
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Measuring temperature (Thermoelements)

Thermocouple
Linearity of some standard thermocouples:
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Measuring temperature (Thermoelements)

Applications of standard thermocouples

• (TYPE N) Nicrosil-Nisil thermocouples are suitable for use in oxidizing inert or dry re-
ducing atmospheres. Must be protected from sulphurous atmospheres. Very accurate at 
high temperatures. Virtually the same emf (electromotive force) and range as Type K.

• (TYPE J) Iron-Constantan thermocouples are suitable for use in vacuum, oxidizing, reducing 
or inert atmospheres. Suitable for measuring temperatures up to 760° C for largest wire size.

• (TYPE K) Chromel-Alumel thermocouples are suitable for continuous use in oxi-
dizing or inert atmospheres up to 1260° C for largest wire size. Because their oxi-
dation resistance characteristics are better than those of other base metal 
thermocouples, they fi nd widest use at temperatures above 538° C.

• (TYPE E) Chromel-Constantan thermocouples are suitable for use up to 781° C in oxi-
dizing or inert atmospheres for largest gauge wires. Type E thermocouples de-
velop the highest emf per degree of all commonly used thermocouples.
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Measuring temperature (Thermoelements)

Applications of standard thermocouples

• (TYPE T) Copper-Constantan thermocouples are suitable for subzero tem-
peratures with an upper temperature limit of 371 °C and can be used 
in vacuum, oxidizing, reducing or inert atmospheres.

• (TYPE R) Platinum 13% Rhodium - Platinum thermocouples are suitable for con-
tinuous use in oxidizing or inert atmospheres at temperatures up to 1482 °C.

• (TYPE S) Platinum 10% Rhodium - Platinum thermocouples are suitable for con-
tinuous use in oxidizing or inert atmospheres at temperatures up to 1482 °C.

• (TYPE B) Platinum 30% Rhodium - Platinum 6% Rhodium thermocouples are 
suitable for continuous use in oxidizing or inert atmospheres and short-
term use in vacuum atmospheres at temperatures up to 1705 °C.

• (TYPE W) Tungsten - Rhenium Alloy thermocouples are used to measure temper-
atures up to 2760 °C. These thermocouples have inherently poor oxidation re-
sistance and should be used in vacuum, hydrogen or inert atmospheres.
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Measuring temperature (Thermoelements)

Thermocouple

Pro:

• Accepts high temperature.

• Small.

• Relatively cheap.

Contra:

• Requires stable amplifi er.

• Temperature differences only.

• Cables between the amplifi er 
and the sensor need to be of 
the same Seebeck coeffi cient.
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Measuring temperature (Resistors)

Thermoresistors

PT100 resistors are commonly manufactured as (thin fi lm) 
Platinum wire on / around glass / ceramic tubes / plates.

Thin fi lm resistor arrays

PT100 casings
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Measuring temperature (Resistors)

Thermoresistors

General case: [1 ( ) ( ) ( ) ]R R A T T B T T T TCT 0 0 0
2

0
3 f= + - + - + - +

Platinum: .A 3 27 10 1
K

3#. -  (at 550 Cc ) … . K4 2 10 13# -  (at 150 Cc- )

PT100

• Calibrated value: 0 R 100 0.1ΩΩT& !c = ; 0.1 0.26KΩ&!

• Range: 200 650C Cc f c- +

• Response time: 0.1s.  in fl owing water 
… multiple seconds in still air.
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Measuring temperature (Resistors)

Thermoresistors: Heating & Measuring

Assume the PT100 to be potted in a TO18 enclosure:

Thermal resistance: R P
T T 480 C

Wth
V

PT E100 c=
-

=

Assume we want to limit the sensing error to 0.5 C! c  around 0 Cc  (R 100ΩT = ):

 R P
T T

P R
T

R
U U R

T R
th

V
PT E

V
th th

2
100 & &

3 $3
=

-
= = =

U R
T R 0.323Vmax

th
T&

3 $
.=

Thus in order to prevent heating the sensor element by more than 
0.5 Cc  we need to keep the operating voltage under 0.323V.
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Measuring temperature (Resistors)

Thermoresistors: Connections

Separating currents from signals  Four wire setup:

Further measures:

• Adding a reference resistor.

• Limit the cable length.

• Keeping all cables on the same temperatures.

• Limit the current.

• Model the non-linearity on the sensor itself.

100 

PT100 

sensor

2.2 k

Vcc

Gnd

A

B

C

D
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Measuring temperature (Thermoelements)

Thermoresistors

Pro:

• Potentially higher accuracy.

• Less non-linearities.

• Long term stability.

• Absolute temperature.

Contra:

• Limited temperature range 
( 200 065C Cc f c- + ).

• Slower reaction time.

• More expensive.

• Less robust.

• Usually bigger.
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Measuring temperature (Thermistors)

Temperature Sensitive Semi-conductors

NTC:

               PTC:
Ω

R25

25°C T Temperature (°C)

Graph with B
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Measuring temperature (Thermistors)

Temperature Sensitive Semi-conductors

Pro:

• Cheap.

• Can be accurate if com-
bine with compensa-
tion for non-linearities.

• Large effects with temperatures 
(easy instrumentation).

• Long term stability 
(some models).

Contra:

• Further limited temperature 
range ( 0 504 3C Cc f c- + ).

• “Strongly” non-linear.

• Comparatively large.

• Generally instable 
and inaccurate.
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Measuring temperature (Noise Voltage)

Noise temperature measurement

Based in Nyquist formula: U kTR f42 3=

(source: Physikalisch-Technische Bundesanstalt, Berlin)

d1

Al2O3 99,7%

d2

Pt10%Rh-shell

sensor

with k : Boltzmann constant, T : thermodynamic temperature, 
R: electric resistance, and f3 : the measurement bandwidth.
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Measuring temperature (Noise Voltage)

Noise temperature measurement

Pro:

• Linear.

• Highly accurate.

• Long term stability.

• Wide temperature range: 
1 2500 Kf c , 
at . %0 1!  accuracy 
over the full range.

Contra:

• Expensive.

• Large.

• Sophisticated amplifi cation 
required (small effect).
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Phenomena to voltage

Further methods of measuring temperature …

• Spreading resistors.

• Piezos and other temperature sensitive crystals.

• Temperature controlled current sources (e.g. AD590).

• Watch Mercury fi lled thermometers with cameras.

• Sense blackbody radiation 
(e.g. infrared-, or more generally: thermal radiation-thermometers)

• …
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Phenomena to voltage

First conclusions
… we only scratched the surface of conversion methods for one physical value (temperature).

 Converting physical phenomena into analogue voltages seems to be a complex matter.

… in fact a whole industry is dedicated to this fi eld exclusively.

 Always ask for the full sensor specifi cations (and read them).

 Never assume that the voltage output is a linear translation of a single physical value.

Physical coupling is not the only loss affl icted stage of conversion, 
yet it is often the most complex one.
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Phenomena to voltage

Range and relative speed measurements

Some commonly employed principles: 

• Triangulation (optical)

• Time of fl ight (optical, acoustical, electro-magnetic)

• Phase correlation (optical, acoustical, electro-magnetic)

• Intensity (optical, acoustical)

• Doppler methods (acoustical, electro-magnetic)

• Interferometry (optical, electro-magnetic)
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Phenomena to voltage

Range measurements by triangulation

Laser
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• Laser required.

• otherwise simple setup with slow components, often used for liquid level measurements.

• Measures along the optical axis only  problematic for safety applications.
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Phenomena to voltage

Range measurements by triangulation

Laser

C
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D
 l
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tand b $ a=   non-linear and poor accuracy for d b&

 Occlusion omits readings  not suited for randomly curved surfaces
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Phenomena to voltage

Range measurements by time of fl ight / phase

Method: measure the time of fl ight between the 
outgoing signal and the received, refl ected signal.

 In case of light, this method requires high resolution timers (> 1 GHz).

• Method is linear.

• The achieved resolution depends on the precision of the signal’s 
rising edge and the resolution of employed timers.

• Signals can be formed and volume measurements are possible.

 In order to increase the resolution, the outgoing signals are often modulated

and the phase shifts between outgoing and refl ected signals are detected.
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Phenomena to voltage

Range and relative speed measurements

2-d Scanning Laser 
Range Finders

Hokuyo UTM-30:

• 905 nm semiconductor laser.

• Nominal range: 
0.1 … 30 m outdoors.

• Maximum range: 60 m

• Accuracy: 10…50 mm depending on 
range and background light.

• Coverage: 270 º.

• Weight: 210 g.

on
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Phenomena to voltage

Range and relative speed measurements

2-d Scanning Laser 
Range Finders

SICK (indoor):

• 905 nm semiconductor laser.

• Maximum range: 80 m.

• Accuracy: 5-10 mm (typical).

• Coverage: 180 º, 0.25 º resolution.

• Response time: 53 ms.

• Weight: 4.5 kg.

• MTBF: 80,000 h
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Phenomena to voltage

Range and relative speed measurements

2-d Scanning Laser 
Range Finders

SICK (indoor):

• 905 nm semiconductor laser.

• Maximum range: 80 m.

• Accuracy: 5-10 mm (typical).

• Coverage: 180 º, 0.25 º resolution.

• Response time: 53 ms.

• Weight: 4.5 kg.

• MTBF: 80,000 h
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Phenomena to voltage

Range and relative speed measurements

Ultrasound time-of-fl ight & 
Infrared refl ected-intensity

Classical “low end” sensors:

• US signal is transmitted and 
received on the same membrane.

 Minimal range limitations.

 Specular refl ections lead to 
potential overestimation.

• IR intensity readings depend 
on object material.
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Phenomena to voltage

Speed measurements: Doppler current profi lers

Doppler shift 
frequency: f f c

v2d s=-

with source frequency fs, relative 
velocity v and signal speed c.

• Signal: 250 kHz - 3 MHz

• Range: 160 m, 
Accuracy: !1%

• Velocity range: 10m
s!

• Blanking zone: 0.2-2.0 m



Physical Coupling

© 2019 Uwe R. Zimmer, The Australian National University page 263 of  961  (chapter 2: “Physical Coupling” up to page 263)

Physical coupling

• Physical phenomena

• Measuring temperature
• Thermoelements, thermocouples, Thermoresistors, Thermistors, 

Noise temperature measurement) and many others …

• Measuring range and relative speed
• Triangulation, Time of fl ight, Intensity, Doppler methods, Interferometry

• Examples: Common acoustical and optical sensors

Summary

 


